5. 本论文主要工作: 1 给出细长圆锥形的截面杆受到质点纵向弹性碰撞时的精确解析解。使用了一种新方法用于分析质点-圆锥形杆碰撞,即由叠加法给出杆的响应。其结果可验证数值解和其他解析解。算例显示,所提出方法的优点之一是响应解的解析形式简洁。算例表明一些描述杆几何形状的变量在撞击分析中具有重要作用。 研究了含弹簧的锥形杆结构撞击问题的解析解。振动过程中把杆和质点作为整体考虑,采用无量纲变量,从而简化方程模型。算例说明了杆中波传播情况和撞击端的响应,并且讨论了质量比和锥形杆截面倾角对波传播的影响。解决了锥形杆结构的纵向撞击问题,并且与等截面杆的纵向撞击问题进行了比较。 2 把杆的质量函数和刚度函数作为2个独立的函数,对于质量函数和刚度函数的若干种形式,进行适当的函数变换后,基本方程转化为Bessel方程或具有常系数的常微分方程。得到满足正交条件的基本解,并且建立了一阶非均匀杆碰撞时的频率方程。 研究了如下受载梁的撞击问题:一个一端固支,一端自由的杆含有一个弹簧-质量耦合系统。使用DMSM方法,撞击问题转化为系统具有初速度的轴向振动系统。把撞击物和靶体作为一个整体振动,获得系统的微分方程,分离时间变量后,化为有初始边值的常微分方程问题。考虑系统的一些参数对系统频率的影响,并且给出此杆结构受撞击后的动态响应。 3 对于质点-梁撞击问题,把撞击物和被撞击物分开考虑,引入撞击力-时间模型,得到如下两种预报撞击力的方法:第一:基于位移协调方程的解法;第二:基于动力微分方程的数值法。与文[76]相比,方法一大幅简化了计算过程,得到近似解,且此法可以推广到四边简支板中去。 4 对于复合材料梁端部受撞击问题,本文把质量块看成质点,使用模态叠加法提供了弯扭耦合作用下的分析方法。算例表明此方法是有效的。 5 提出一种确定恢复系数的方法:即首先使用DMSM方法得到撞击结束时间,再得到恢复系数的步骤。算例表明,本文方法能够从理论上得到弹性碰撞恢复系数的表达式,且结果是有效的。 参考文献: 1. Goldsmith, Werner, Impact, Edward Arnold Publishers, London, 1960. 2. Brach, Raymond M., Mechanical Impact Dynamics: Rigid Body Collisions. JohnWiley & Sons, New York, 1991. 3. Zukas, Jonas A.; Nicholas, T.; Swift, H. F.; Greszczuk, L. B.; Curran, D. R. Impact Dynamics, Krieger Publishing Company, Malabar, FL, 1992. 4 B. Hu, P. Eberhard and W. Schiehlen. Symbolic Impact Analysis for a Falling Conical Rod against the Rigid Ground [J].Journal of Sound and Vibration. 2001, 240(1): 41-57. 5 Bin Hu, Peter Eberhard. Symbolic computation of longitudinal impact wave [J]. Comput. Methods Appl. Mech. Engrg. 2001, 190: 4805-4815. 6. THOMAS W. WRIGHT. ElASTIC WAVE PROPAGATION THROUGH A MATERIAL WITH VOIDS. Journal of the Mechanics and Physics of Solids, 1998, 46(10): 2033-2047. 7. A. Benatara, D. Rittelb, A.L. Yarinb. Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods. Journal of the Mechanics and Physics of Solids 2003(51) 1413-1431. 8. Maugin, Gerard A., The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge, 1992. 9. Lubliner, Jacob, Plasticity Theory, Macmillan Publishing Company, New York, 1990. 10. H. H. Ruan and T. X. Yu. Collision between mass–spring systems. International Journal of Impact Engineering, 2005, 31(3): 267-288. 11. Kozlov, Valerii V. and Treshchëv, Dmitrii V., Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, American Mathematical Society, 1991. 12. Yildirim Hurmuzlu. ASME Journal of Applied Mechanics, Vol. 65, No.4, An Energy Based Coefficient of Restitution for Planar Impacts of Slender Bars with Massive External Surfaces: 952-962. 13 姚文莉. 考虑波动效应的碰撞恢复系数研究. 山东科技大学学报,2004, 23 (2):83-86. 14. Ramírez, Rosa; Pöschel Thorsten; Brilliantov Nikolai V. and Schwager Thomas, Coefficient of restitution of colliding viscoelastic spheres, Physical Review E, 1999 60 (4), 4465-4472. 15. Falcon, E.; Laroche C.; Fauve S. and Coste C., Behavior of One Elastic Ball Bouncing Repeatedly off the Ground, The European Physical Journal B, Vol. 3, 1998, 45-57. 16. Kuwabara, G. and Kono K., Restitution Coefficient in a Collision Between Two Spheres, Jap. J. of Appl. Physics, 1987, 26(8): 1230-1233. 17. 尹邦信. 弹性板受撞击的动力响应分析. 应用数学和力学, 1996, 17 (7):639-644. 18. Johnson K. L., Contact Mechanics, Cambridge University Press, 1985. 19 Xing YuFeng, Zhu DeChao, Analytical Solutions of Impact Problems of Rod Strucutures with Springs. Comput. Methods Appl. Mech. Engrg. , 1998,160: 315~323 20 诸德超,邢誉峰. 点弹性碰撞问题之解析解. 力学学报, 1996, 28( 1): 99~103. 21 Xing Yu-feng, Qiao Yuan-song, Zhu De-chao, Sun Guo-jiang. Elastic Impact on Finite Timoshenko Beam. ACTA Mechanica Sinica. 2002, 18(3): 252-263. 22邢誉峰,诸德超. 杆和板弹性正碰撞的瞬态响应. 航空学报, 1996, 17(7): S42~S46 23邢誉峰. 梁结构线弹性碰撞的解析解. 北京航空航天大学学报. 1998, 24 (6): 633-637. 24邢誉峰.有限长Timoshenko梁弹性碰撞接触瞬间的动态特性[J].力学学报,1999,31(1):67-74. 25邢誉峰,诸德超,乔元松. 复合材料叠层梁和金属梁的固有振动特性. 力学学报. 1998,30 (5): 628-634. 26 邢誉峰,诸德超. 杆和梁在锁定过程的响应. 计算力学学报, 1998, 15(2): 192~196. 27 C.T. Sun and S. Chattopadhyay, Dynamic response of anisotropic laminated plates under initial stress to impact of a mass. J. Appl. Mech. 42 (1975), p. 693 28. A.L. Dobyns, Analysis of simply-supported orthotropic plates subject to static and dynamic loads. AIAA J. 19 (1980), 642. 29 A. Carvalho and C. Gliedes Soares. Dynamic response of rectangular plates of composite materials subjected to impact loads. Composite Structures, 1996,34(1): 55-63. 30. T.J.R. Hughes, R.L. Taylor, J.L. Sackman et al., A finite element method for a class of contact-impact problems, Comput. Methods. Appl. Mech. Engrg. 8 (1976) 249-276. 31. J.C. Simo, N. Tarnow, K.K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comput. Methods. Appl. Mech. Engrg. 100 (1992) 63-116. 32. Jerome M. Solberg, Panayiotis Papadopoulos. A finite element method for contact/impact.Finite Elements in Analysis and Design. 1998 (30) 297-311. 33 J.L. Escalona, J. Mayo, J. DomõÂ nguez. A new numerical method for the dynamic analysis of impact loads in flexible beams. Mechanism and Machine Theory. 1999(34) 765-780. 34. R.-F. FUNG, J.-H. SUN, J.-W. WU. TRACKING CONTROL OF THE FLEXIBLE SLIDER CRANK MECHANISM SYSTEM UNDER IMPACT Journal of Sound and Vibration. 2002. 255(2), 337-355. 35 Y. A. KHULIEF, A. A. SHABANA. Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motion. American Society of Mechanical Engineers Journal of Mechanisms, Transactions, and Automation in Design 1986(108), 38–45. 36. Q. S. Li, L. F. Yang, Y. L. Zhao and G. Q. Li. Dynamic analysis of non-uniform beams and plates by finite elements with generalized degrees of freedom. International Journal of Mechanical Sciences, 2003, 45(5): 813-830. 37. Ke Yang , Q. S. Li and Lixiang Zhang. Longitudinal vibration analysis of multi-span liquid-filled pipelines with rigid constraints. Journal of Sound and Vibration, 2004, 273, (1,2):125-147. 38. Q. S. Li. Analytical solutions for buckling of multi-step non-uniform columns with arbitrary distribution of flexural stiffness or axial distributed loading. International Journal of Mechanical Sciences, 2001, 43(2): 349-366. 39. Q. S. Li. Non-conservative stability of multi-step non-uniform columns. International Journal of Solids and Structures, 2002, 39(9): 2387-2399. 40. Q. S. Li. Buckling of multi-step non-uniform beams with elastically restrained boundary conditions. Journal of Constructional Steel Research, 2001, 57(7): 753-777. 41. Q. S. Li. Classes of exact solutions for buckling of multi-step non-uniform columns with an arbitrary number of cracks subjected to concentrated and distributed axial loads. International Journal of Engineering Science, March 2003, , 41(6): 569-586. 42. Q. S. Li. Torsional vibration of multi-step non-uniform rods with various concentrated elements. Journal of Sound and Vibration, 2003, 2607(4): 637-651. 43. H. Qiao, Q. S. Li and G. Q. Li. Vibratory characteristics of flexural non-uniform Euler–Bernoulli beams carrying an arbitrary number of spring–mass systems. International Journal of Mechanical Sciences, 2002, 44(4): 725-743. 44. Q. S. Li, J. R. Wu and Jiayun Xu. Longitudinal vibration of multi-step non-uniform structures with lumped masses and spring supports. Applied Acoustics, 2002, 63(3):333-350. 45. Q. S. Li. Buckling analysis of non-uniform bars with rotational and translational springs. Engineering Structures, 2003, 25(10):1289-1299. 46. Q. S. Li. FREE VIBRATION ANALYSIS OF NON-UNIFORM BEAMS WITH AN ARBITRARY NUMBER OF CRACKS AND CONCENTRATED MASSES. Journal of Sound and Vibration, 2002, 252(3): 509-525. 47. Q.S. Li, G.Q. Li, D.K. Liu. International Journal of Mechanical Sciences. 2000, (42) 1135-1152 Exact solutions for longitudinal vibration of rods coupled by translational springs. 48 M. Gürgöze. ON THE EIGENVALUES OF VISCOUSLY DAMPED BEAMS, CARRYING HEAVY MASSES AND RESTRAINED BY LINEAR AND TORSIONAL SPRINGS. Journal of Sound and Vibration, 1997208(1): 153-158. 前半部分翻译自文献: Salah Faik, Holly Witteman. Modeling of Impact Dynamics: A Literature Survey. International ADAMS User Conference. 2000. 1-11. 并结合自己的阅读写成。 |
GMT+8, 2024-11-24 23:39 , Processed in 0.046634 second(s), 23 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.