弦上波动理论非但本身具有重要应用价值,而且是理解一维波动问题(如管道中平面声波等)之理论基础。根据达朗贝尔解,均匀无限长弦上的波可分解为相反方向传播的行波。但若弦非均匀,或存在异物,则会影响行波之传播,产生波的反射与透射现象。本文探讨弦上某处附有局域共振(locally resonant) 结构情形下的弦波传播问题。文中采用有效质量方法求解,简洁明了,有助于理解所涉的声学过程与机理。 设有无限长弦,在x=0处系有质量M的质点,该质点又经弹性系数为K之弹簧悬挂质量为m的另一质点,构成复合质点振动系统,如图1左图所示。入射的弦波ξi行至M处,一部分被反射,形成反射波(reflected wave)ξr,另一部分则透过M,形成透射波(transmitted wave)ξt。不失一般性,假定入射波(incident wave)的振幅为1,入射波ξi、反射波ξr和透射波ξt分别具如下形式: 其中ω是波的频率,k是波数,c是波速,r是反射波ξr相对入射波ξi的大小——反射系数,τ是透射波ξt相对入射波ξi的大小——透射系数。注意,反射系数r和透射系数τ一般是复数量。所以,质量M之左侧的入射区域,弦的波是入射波ξi与反射波ξr的叠加,而右侧仅有透射波ξt: 此解既满足弦的波动方程,又满足无穷远处的边界条件:在x→-∞处,有正向的行波ξi作为入射波射入,在x→+∞处,无反射波。左图虚线围起部分乃M-K-m力学系统之导纳型等效线路。 以下借助于有效质量概念描述集总参数系统对弦波传播的影响。根据《有效质量与有效弹性,负质量与负弹性系数》一文,质点M的有效质量Meff为: 其中ω0是m-K子系统的共振频率。有效质量Meff在左右两边弦的张力T的作用下产生位移为η的振动,其振动方程为: 在质点M处,还应满足位移连续的边界条件: 把由上得到反射系数和透射系数: 其中R0=ρc是弦的特性阻抗,ρ是弦的线密度。由此可见,当m-K子系统发生共振时,有效质量无穷大,反射系数等于1,入射波全反射。 相反,若: 则有效质量等于零,透射系数等于1,入射波无障碍全透射。 定义归一化频率z和质点m和M的力学品质因子Q如下: 借此,透射系数可表为如下简洁的形式(其中θ是透射系数的相位): 首先,考察K-m子系统不存在之情形。此时,Meff=M,则只要取Qm=0,而ω0取任意参考频率即可。图2是此种情形下的透射幅度谱和相位谱。从中可见,由于质量M的存在,入射波被反射。随着频率的增大,反射越强,导致透射系数随频率衰减愈烈,乃至高频时趋于零。极高频时,M的惯性抗极大,所以入射波几乎全反射。 再看只存在K-m振子子系统情形。此时虽然M=0,但有效质量Meff并不为零,而且在子系统的共振频率处奇异。有效质量之存在极大地改变了波的透射,如图3所示。可见,由于z=1(共振频率)时,有效质量无穷大,入射波反射。这是一种共振反射(resonant reflection)。同时,在z=1处,透射波的相位发生180度的陡降。 最后,考察本文之重点——M和m共存之情形。下图4是透射系数的幅度和相位频谱。与只存在K-m子系统所相同的是,在z=1处发生全反射。与彼不同的是,在z>1某处出现了透射系数为1的共振透射(resonant transmission)峰,状似Fano共振谱。此处,透射系数等于零的现象是一种反共振(anti-resonance),其发生盖因有效质量无穷大。此时,质量M点犹固定边界,入射波全反射。与此相反,共振全透射之所以发生,因有效质量为零之故。在给出的频率点,若质点M及单振子子系统均不存在。有意思的是,在反共振处,相位陡降180度,但在共振附近,又渐升180度。 来源:网易聲之韻博客 作者:王新龍教授,南京大学声学所 |
GMT+8, 2024-11-26 02:34 , Processed in 0.049704 second(s), 23 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.