§3 二次规划模型
数学模型: 其中H为二次型矩阵,A、Aeq分别为不等式约束与等式约束系数矩阵,f,b,beq,lb,ub,x为向量。 求解二次规划问题函数为quadprog( ) 调用格式:
说明:输入参数中,x0为初始点;若无等式约束或无不等式约束,就将相应的矩阵和向量设置为空;options为指定优化参数。输出参数中,x是返回最优解;fval是返回解所对应的目标函数值;exitflag是描述搜索是否收敛;output是返回包含优化信息的结构。Lambda是返回解x入包含拉格朗日乘子的参数。 例1:求解:二次规划问题
程序:
结果: X = -0.0455 0.3636 fval =-0.5682 exitflag =1 例2:求解:二次规划问题 程序:
结果: x = 0.6667 1.3333 fval =-16.4444 exitflag =1 |
max f=2x1+5x2
s.t
min(-f)=- 2x1-5x2
minf=5x1-x2+2x3+3x4-8x5
s.t –2x1+x2-x3+x4-3x5≤6
2x1+x2-x3+4x4+x5≤7
0≤xj≤15 j=1,2,3,4,5
minf=5x1+x2+2x3+3x4+x5
s.t –2x1+x2-x3+x4-3x5≤1
2x1+3x2-x3+2x4+x5≤-2
0≤xj≤1 j=1,2,3,4,5
设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。
max f=70x1+120x2
s.t 9x1+4x2≤3600
4x1+5x2≤2000
3x1+10x2≤3000
x1,x2≥0
min f=-70x1-120x2
s.t 9x1+4x2≤3600
4x1+5x2≤2000
3x1+10x2≤3000
x1,x2≥0
max f=0.15x1+0.1x2+0.08 x3+0.12 x4
s.t x1-x2- x3- x4≤0
x2+ x3- x4≥0
x1+x2+x3+ x4=1
xj≥0 j=1,2,3,4
min z=-0.15x1-0.1x2-0.08 x3-0.12 x4
s.t x1-x2- x3- x4≤0
-x2- x3+ x4≤0
x1+x2+x3+ x4=1
xj≥0 j=1,2,3,4
max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]
s.t x1+x2≤5000
x 1≥0,x2≥0
min F(x)
s.t Gi (x) ≤0 i=1,…,m
Gj (x) =0 j=m+1,…,n
xl≤x≤xu
其中:F(x)为多元实值函数,G(x)为向量值函数
min 100(x2-x12 )2+(1-x1)2
s.t x1≤2;
x2≤2
minf=ex1(6x12+3x22+2x1x2+4x2+1)
s.t x1x2-x1-x2+1≤0
-2x1x2-5≤0
min +x12+2x22-2x1x2-4x1-12x2
s.t x1+x2≤2
-x1+2x2≤2
2x1+x2≤3
0≤x1, 0≤x2
max f1(x)=70x1+66x2
min f2(x)= 0.02x12+0.01x22+0.04(x1+x2)2
s.t x1+x2≤5000
0≤x1, 0≤x2
线性加权构造目标函数: max f=0.5f1(x) –0.5f2(x)
化最小值问题: min (-f)=- 0.5f1(x) +0.5f2(x)
min f1(x)=2x1+5x2
min f2(x)=4x1+x2
s.t x1≤5
x2≤6
x1+x2≥7
x1 ,x2≥0
min f1=6x1+8x2
max f2=100(x1+x2)
max f3=x2
s.t 6x1+8x2≤48
x2≥5
x1 ,x2≥0
min f1=6x1+8x2
min - f2=-100(x1+x2)
min - f3=-x2
s.t 6x1+8x2≤48
-x2≤-5
x1 ,x2≥0
GMT+8, 2025-4-11 21:45 , Processed in 0.060451 second(s), 25 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.