一、疲劳的基本概念 (一)、疲劳破坏的特征1、在交变的工作应力远小于材料的强度极限,甚至比屈服极限还小的情况下,破坏就可以发生。 2、疲劳破坏是一个累积损伤的过程,要经过一定的时间历程在交变应力多次循环之后才突然发生。 3、疲劳破坏时没有明显的塑性变形。即使塑性较好的材料,破坏时也象脆性材料那样,只有很小的塑性变形。因此,疲劳破坏事前不易察觉。 4、疲劳破坏的断口有明显的特征,总是呈现两个不同的区域,一个是比较光滑的区域,叫做疲劳区,内有弧形线条,叫做疲劳线;另一个是比较糙的区域,叫做瞬时断裂区。此区域内没有疲劳线。 (二)、疲劳破坏的原因 疲劳破坏的原因 内因:构件外形尺寸的突变或材料内部有缺陷 外因:构件要承受有交变载荷(或交变应力) 在交变应力长期作用下,在构件外形突变处,或材料有缺陷处出现应力集中,逐步形成了非常细微的裂纹(即疲劳源),在裂纹尖端产生严重的应力集中,促使裂纹逐渐扩展,构件截面不断削弱。当裂纹扩展到一定程度,在偶然的超载冲击下,构件就会沿削弱了的截面发生突然断裂。 二、飞机结构承受的交变载荷 (一)、飞机结构承受的疲劳载荷1. 机动载荷 它是由于飞机在机动飞行中,过载的大小和方向不断改变而使飞机承受的气动交变载荷。机动载荷用飞机过载的大小和次数来表示。 2. 突风载荷 它是由于飞机在不稳定气流中飞行时,受到不同方向和不同强度的突风作用而使飞机承受的气动交变载荷。 3. 地-空-地循环载荷 飞机在地面停放或在地面滑行时,机翼在本身重量和设备重量作用下,承受向下的弯矩,但飞机离地起飞后,机翼在升力作用下,承受向上的弯矩。这种起落一次交变一次的载荷,称为地-空-地循环载荷。这是一种时间长、幅值大的载荷。 4. 着陆撞击载荷 它是由于飞机着陆接地后,起落架的弹性引起飞机颠簸加到飞机上的重复载荷。 5. 地面滑行载荷 它是由于飞机在地面滑行时因跑道不平引起颠簸,或由于刹车、转弯、牵引等地面操纵而加到飞机上的重复载荷。 6. 座舱增压载荷 这是由于座舱增压和卸压,而加给座舱周围构件的重复载荷。 在以上几种疲劳载荷中,对歼击机影响最大的是机动载荷、着陆撞击载荷和地面滑行载荷。 (二)、交变应力 在上述交变载荷作用下,构件内部的应力也将是周期性变化的“交变应力”。 当交变应力规则地变化时,可以用正弦波形表示应力随时间变化的情况。由图1可见,交变应力在两个极值之间作用周期性的变化。这两个极值中大的一个叫做“最大应力”,小的一个叫做“最小应力”。 图1 交变应力 交变应力每作一个周期性变化,叫做“应力循环”。为了说明交变应力的变化规律,通常用最小应力和最大应力的比值来表示,即:这个比值叫“循环特征”(或“应力比”)。 在每一个循环中,当最大应力和最小应力相等而符号相反时,这样一种应力循环叫“对称循环”。当应力变化是时有时无,即从零到最大值,又从最大值至零,这种最小值为零的应力叫做“脉动循环”。当循环特征为任意数值时,此种应力循环属“非对称循环”。 图2 对称循环 图3 脉动循环 图4 疲劳极限的测定 三、材料的疲劳极限和曲线 材料在一定循环特征下,可以承受无限次应力循环而不发生破坏的最大应力,叫做材料的疲劳极限。每一种材料的疲劳极限必须通过试验来测定。下面以对称循环旋转弯曲疲劳极限的测定方法为例作简单介绍。 图5 钢的σ-N曲线 图6 铝合金的σ-N曲线 图7 σ-N曲线的三个范围 图8 损伤尺寸与载荷循环数的关系 四、影响飞机结构疲劳强度的因素 根据部队和工厂维修实践,影响飞机结构疲劳强度的因素主要有以下四个方面:(一)、应力集中的影响 大量破坏事例证明:应力集中是影响飞机结构疲劳强度的主要因素,疲劳源总是出现在应力集中的部位。如开孔、开槽、倒角、螺纹等处容易出现疲劳裂纹。 (二)、表面加工质量的影响 大量的破坏事例也证明:表面加工质量不高,也是影响飞机结构疲劳强度的重要因素。 (三)、装配效应的影响 使用经验和疲劳试验表明,各种装配效应对结构的疲劳强度影响很大。 (四)、使用环境的影响 1. 腐蚀疲劳 金属受到腐蚀,将产生“腐蚀疲劳”,使疲劳强度降低,因为腐蚀使金属表面产生无数的小应力集中点,促使疲劳裂纹的形成。 2. 擦伤疲劳 当两个相互接触的固体表面具有微小的相对运动时,表面会受到损伤,这就会引起“擦伤疲劳”(或称“擦伤腐蚀”)。 3. 高温疲劳和低温疲劳 温度对结构的疲劳强度也有影响。 4. 热疲劳 构件在交变的热应力作用下引起的破坏称为“热疲劳”。这种热应力主要来自两方面,①由温度分布不均所引起的;②限制金属自由膨胀或收缩所引起的。热疲劳破坏常常表现为金属表面细微裂纹网络的形成,叫做“龟裂”。 5. 声疲劳 在声环境下工作的构件,因为受到噪音的激励而产生振动,由这种强迫振动引起的破坏,称为“声疲劳”或“噪音疲劳”。 五、提高飞机结构疲劳强度的措施 目前飞机设计制造,在结构布局、材料选择和工艺方法等方面,都采取了许多措施来提高飞机结构疲劳强度。这里仅就与使用维护有关的方面作一介绍。(一)、减缓局部应力 由于应力集中是影响疲劳强度的主要因素。因此,减缓局部应力是提高构件疲劳强度的一项重要措施。在维护使用中减缓局部应力的方法,主要是增大圆角半径和打止裂孔。 1. 增大圆角半径 减缓局部应力的一般原则是:防止截面有急剧的变化,当这种变化不可避免时,应保证这种变化有足够的圆角半径。 图9 歼6飞机前起落架轮叉接耳根部圆角的改进 图10 止裂孔降低了应力机长 2. 打止裂孔 当构件上已出现疲劳裂纹之后,为了减缓裂纹尖端的局部应力,较有效的办法是打止裂孔。由疲劳破坏的特征可知,疲劳破坏有一个过程,也就是说,在达到破坏之前,裂纹是缓慢扩展的。打止裂孔的目的就是制止裂纹缓慢扩展。 打止裂孔之所以能减缓裂纹尖端的局部应力制止裂纹缓慢扩展,主要是因为孔增大了裂纹尖端的曲率半径,降低了应力集中程度。 (二)、提高表面质量 由于表面粗糙是引起应力集中的因素,因此提高构件表面光洁度,也是提高构件疲劳强度的重要措施。 1. 消除构件上由于加工而残留的刀痕 削除的方法是:用锉刀、砂布进行打磨,但严禁用砂轮打磨,并注意打磨方向,防止造成新的周向刀痕。打磨处的光洁度不应低于▽6,并应均匀光滑过渡。 证明,这个措施对于预防承力构件裂纹有明显作用。 2. 在使用中,应尽力防止构件表面人为地造成伤痕 过去有不少人认为,碰伤、划伤一点,只能触及飞机结构的一点毛皮,不会影响飞机寿命。这种认识是片面的。 3. 提高表面材料强度,能使抗疲劳能力增加 常用的方法是渗碳、渗氮、氰化、高频电表面淬火、滚压、喷丸和挤压强化等。这些方法使材料表面组织变化,强度增加,因而疲劳强度增加。 4. 对承受交变载荷的连接件,在装配时施加短梁的预应力,也可以提高连接件的疲劳强度。 本文转载自CAE技术联盟(ID:caejslm),原文来源:北方科技学院。 |
GMT+8, 2024-11-25 19:51 , Processed in 0.059300 second(s), 23 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.