1、Matlab中FFT的调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性 调用方法: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) 运行结果: Xk = 39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 2、FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 代码如下: clf; fs=100;N=128; %采样频率和数据点数 n=0:N-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求得Fourier变换后的振幅 f=n*fs/N; %频率序列 subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128'); grid on; subplot(2,2,2); plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128'); grid on; %对信号采样数据为1024点的处理 fs=100; N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024'); grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024'); grid on; 运行结果: fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。 若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。 例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制: (1) 数据个数N=32,FFT所用的采样点数NFFT=32; (2) N=32,NFFT=128; (3) N=136,NFFT=128; (4) N=136,NFFT=512。 代码如下: clf;fs=100; %采样频率 Ndata=32; %数据长度 N=32; %FFT的数据长度 n=0:Ndata-1;t=n/fs; %数据对应的时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %时间域信号 y=fft(x,N); %信号的Fourier变换 mag=abs(y); %求取振幅 f=(0:N-1)*fs/N; %真实频率 subplot(2,2,1); plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅 xlabel('频率/Hz'); ylabel('振幅'); title('Ndata=32 Nfft=32'); grid on; Ndata=32; %数据个数 N=128; %FFT采用的数据长度 n=0:Ndata-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); y=fft(x,N); mag=abs(y); f=(0:N-1)*fs/N; %真实频率 subplot(2,2,2); plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅 xlabel('频率/Hz'); ylabel('振幅'); title('Ndata=32 Nfft=128'); grid on; Ndata=136; %数据个数 N=128; %FFT采用的数据个数 n=0:Ndata-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); y=fft(x,N); mag=abs(y); f=(0:N-1)*fs/N; %真实频率 subplot(2,2,3); plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅 xlabel('频率/Hz'); ylabel('振幅'); title('Ndata=136 Nfft=128'); grid on; Ndata=136; %数据个数 N=512; %FFT所用的数据个数 n=0:Ndata-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); y=fft(x,N); mag=abs(y); f=(0:N-1)*fs/N; %真实频率 subplot(2,2,4); plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅 xlabel('频率/Hz'); ylabel('振幅'); title('Ndata=136 Nfft=512'); grid on; 运行结果: 结论: (1) 当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。 (2) 由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。 (3) FFT程序将数据截断,这时分辨率较高。 (4) 也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。 对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。 例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n) 代码参考上述两个例子,运行结果如下: 结论: (1) 数据点过少,几乎无法看出有关信号频谱的详细信息; (2) 中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。 (3) 信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。 可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。 本文摘录自万永革主编的《数字信号处理的MATLAB实现》 |
GMT+8, 2024-11-25 13:45 , Processed in 0.051149 second(s), 24 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.