声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 3195|回复: 6

[控制理论] [讨论]关于网络控制系统的研究

[复制链接]
发表于 2006-4-24 19:48 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
请研究网络控制系统的来这里,共同讨论一下各自的见解!
[此贴子已经被cdwxg于2006-5-28 0:30:14编辑过]


[ 本帖最后由 cdwxg 于 2006-8-5 21:20 编辑 ]
回复
分享到:

使用道具 举报

发表于 2006-8-7 14:13 | 显示全部楼层
有些帖子里面已经回复或者提供资料,对于该方面我了解不是太多
给予一些提示或者暂时帮助吧:)

进入21世纪初的控制系统将是以网络为主要特征;一方面是在自动化与工业控制中需要更深层次地渗透通信与网络技术。随之CAN局域控制网、各种现场总线进入了制造业和化工厂等工业控制中,采用分布式控制方式,具有简单、快捷、连线大为减少、可靠性高、系统中各部分容易实现信息资源的共享等优点。新一代的飞行器,由于计算机、智能终端、传感器和执行器散落在不同空间的,它们之间的信息处理将通过数据通讯网络来实现的。这些都是典型的网络环境下的控制系统。另一方面是在通信网络的管理与控制中也要求更多地采用控制理论与策略。计算机网络、Internet、虚拟网络、企业网络、现代信号处理等等使自动化系统与工业控制系统从体系结构、控制方法、产品系列、人机协作方法等都发生了重大的变化, 同时带来了新的课题。其中之一就是网络环境下的控制方法与算法需要创新。
网络的介入,不可避免的带来以下的问题
1. 信息的传输延迟, 并且通常是随机的。
2. 由于网络传输的不可靠性,网络控制系统还有丢失信息包的现象发生。
3. 多数据包传输问题。
这些问题的存在,不但会降低系统的控制性能,而且还是引起系统不稳定的一个潜在的因素, 尤其是对那些快速系统,影响更大。目前还没有有效的方法对其进行分析与设计。



下面这个是一个人的个人主页
她是研究网络控制的到她的个人主页下载2006最新的前沿论文
http://yyxls101.88206.com/

[ 本帖最后由 cdwxg 于 2007-1-23 12:55 编辑 ]
发表于 2006-8-22 10:13 | 显示全部楼层

网络控制新趋势

前几年大家做的最多的是如何补偿网络时延及数据包丢失,方法很多都把自己熟悉的方法套用到网络控制中,目前最前沿该是从通信角度考虑的带宽受限及量化问题,这方面的文献国内一篇也没有,国外也不多,这些文献可以到我的主页下载

网址:  http://yyxls101.88206.com/folder.php

文献集点右键另存为便可下载

[ 本帖最后由 yyxls101 于 2006-8-22 10:15 编辑 ]

评分

1

查看全部评分

发表于 2007-1-4 22:14 | 显示全部楼层

回复 #3 yyxls101 的帖子

你的网页做的不错
挺喜欢的
只可惜没时间学了
可惜:'(
发表于 2007-1-11 15:19 | 显示全部楼层
说说我自己所了解到的和自己的一些看法。
      以系统论的观点对网络运作加以刻画并实施控制是如今比较热门的话题,网络系统一般比较复杂,常称为复杂网络系统,实际上是一类比较具体的复杂系统!
      所以网络系统控制的难点在于两方面。
      一是复杂性科学本身就很难,复杂系统特性的研究还处于初级阶段;其次是网络系统控制属于交叉学科比较强的方向,涉及到自动控制科学,系统科学,计算机科学,信息论和通信等等!   
      由网络系统的研究也不难看出复杂性科学的重要性,伴随着互联网技术的快速发展,出现了许多尖端的课题,如网络安全(信息的保密与完整,网络运作的可靠性等等)、网络优化配置等等,都需要依赖于复杂系统理论的解决。

[ 本帖最后由 xmwhit 于 2007-1-11 15:40 编辑 ]
发表于 2007-1-22 11:38 | 显示全部楼层
这些是关于网络结构和动力学方面的文献资料目录
1.        普利高津和斯唐热,从混沌到有序:人与自然的新对话,曾庆宏和沈小峰译,上海译文出版社,上海,1987
2.        湛垦华、沈小峰等,普利高津和耗散结构理论,陕西科学出版社,西安,1982
3.        哈肯,高等协同论,郭冶安译,科学出版社,北京,1989
4.        詹姆斯,混沌:开创新科学,张淑誉译,上海译文出版社,上海,1990
5.        Zhang. S.Y, Bibliography on chaos, In: Hao. B.L, ed, Direction in Chaos, Publishing Co Pte Ltd, Singapore, 1991.
6.        Ott. E, Grebogi. C and York. J A, Controlling chaos, Phys.Rev.Lett., 64, p 1196-1199, 1990.
7.        Pecora. L.M and Carroll. T.L, Synchronization in chaotic collective systems, Phys.Rev.Lett., 64, p 821-824, 1990.
8.        Hopfield. J.J, Neural networks and physical systems with emergent collective computertational abilities, Proc.Nall.Acad.,Sci., 79, p937-946, 1982.
9.        焦李成,神经网络系统理论,西安电子科技大学出版社,西安,1990
10.    米歇尔.沃尔德罗普,混沌:诞生于秩序与混沌边缘的科学,陈玲译,生活、读书、新知三联书店,上海,1997
11.    弗里德里希,混沌与秩序:生物系统的复杂结构,柯志阳和员彤译,上海科技教育出版社,上海,2000
12.    约翰.霍兰,隐秩序:适应性造就复杂性,周晓牧和韩晖译,上海科技教育出版社,上海,2000
13.    R. Albert and A.L.Barabasi, Statistical mechanics of complex networks, Rev.Modern Physics, 74, p 48-97, 2002.
14.    M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45, p 167-256, 2003.
15.    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D. U. Hwang, Complex networks: Structure and dynamics, Physics Report, 424,p175-308, 2006.
16.    O.Mason and M. Verwoerd, Graph theory and networks in biology, p.1-52, (传给我时,文章第一页写明完成日期为2006.4.6).
17.    K. I. Goh, E. Oh, B. Kahng and D. Kim, Betweenness centrality correlation in social networks, Phys.Rev.E, 67, 017101, 2003.
18.    M. E. J. Newman, Mixing pattern in networks, Phys.Rev.E., 67, 026126, 2003.
19.    P. Erdos and A. Renyi, On random graphs, Publicationes Mathematicae, 6, p 290-297, 1959.
20.    P Erdos and A. Renyi, On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Science, 5, p 17-61, 1960.
21.    D. J. Watt and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393, p440-442, 1998.
22.    R. Monasson, Diffusion,localization and dispersion relations on small-world lattices, Eur. Phys. J. B., 12, p555-567, 1999.
23.    M. E. J. Newman and D. J. Watt, Renormalization group analysis of the small-world network model, Phys. Lett. A, 263, p341-346, 1999.
24.    M. E. J. Newman, C. Moore and D. J. Watt, Mean-field solution of the small-world network model, Phys.Rev.Lett., 84, p3201-3204, 2000.
25.    A. Barrat and M. Weigt, On the properties of small-world networks, Eur. Phys. J. B., 13, p547-560, 2000.
26.    A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286, p509-512, 1999.
27.    R. Albert and A. L. Barabasi, Dynamics of complex systems: Scaling laws for the period of Boolean networks, Phys.Rev.Lett., 84, p5660-5663, 2000.
28.    R. Albert and A. L. Barabasi, Topology of evolving networks:local events and universality, Phys.Rev.Lett., 85, p5234-5237, 2000.
29.    P. L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of growing random networks, Phy.Rev.Lett, 85, p4629-4632, 2000.
30.    S. N. Dorogovtsev and J. F. F. Mendes, Effect of the accelerating growth of communications networks on their structure, Phys.Rev.E, 63, 025101, 2001.
31.    S. N. Dorogovtsev and J. F. F. Mendes, Scaling behaviour of developing and decaying networks, Europhys.Lett., 52, p33-39, 2000.
32.    P. L. Krapivsky and S. Redner, A statistical physics perspective on Web growth, Computer Networks, 39, p261-276, 2002.
33.    B. Tadic, Dynamics of directed graphs: The World-Wide Web, Physica A, 293, p273-284, 2001.
34.    G Bianconi and A. L. Barabasi, Bose-Einstein condensation in complex networks, Phys.Rev.Lett, 86, p5632-5635, 2001.
35.    A. Vazquez  et al, Modeling of protein interaction networks, ComPlexUs, 1, p38-46, 2003.
36.    R. Sole et al., A model of large scale proteome evolution, Advances in Complex Systems, 5, p43-54, 2002.
37.    F. Chung and L. Lu, Coupling online and offline analyses for random power graphs, Internet Mathematics, 1, p409-461, 2004.
38.    A. Bhan, D. Galas and T. G. Dewey, Non-negative matrices in the mathematical sciences, SIAM classics in applied mathematics, P?1994.
39.    J. Berg, M. Lassing and A. Wagner, Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications, BMC Evolutionary Biology, 4, p51, 2004.
40.    R. Milo et al., Network motifs: simple building blocks of complex networks, Science, 298, p824-827, 2002.
41.    M. Newman, Fast algorithm for detecting community structure in networks, Phys.Rev.E, 69, 066133, 2004.
42.    M. Newman and M.Girvan, Finding and evaluating community structure in networks, Phys.Rev.E, 69, 026113, 2004.
43.    R.Milo et al., Superfamilies of evolved and designed networks, Science, 303, p1538-1542, 2004.
44.    F. Radicchi et al., Defining and identifying communities in networks, Proc.Nat.Acad.Sci., 101, p2658-2663, 2004.
45.    E. Ziv, M. Middendorf and C. Wiggins, An information-theoretic approach to network modularity, Phys.Rev.E, 71, 046117, 2005.
46.    S. Yook, Z. Oltvai and A. Barabasi, Functional and topological characterization of protein interaction networks, Proteomics, 4, p928-942, 2004.
47.    S. Wuchty, Z. Oltvai and A. Barabasi, Evolutionary conservation of motif constituents in the yeast protein interaction network, Nature Genetics, 35, p176-179, 2003.
48.    E. Segal et al., Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nature Genetics, 34, p166-176, 2003.
49.    N. Przulj, D Wigle and I. Jurisica, Functional topology in a network of protein interactions, Bioinformatics, 20, p340-348, 2004.
发表于 2007-1-22 11:38 | 显示全部楼层
50.    N. Kashtan et al., Topological generalizations of network motifs, Phys.Rev.E, 70, 031909, 2004.
51.    S. Fortunato, V. Latora and M. Marchiori, Method to find community structures based on information centrality, Phys.Rev.E, 70, 056104, 2004.
52.    M. Girvan and M.Newman, Community structure in social and biological networks, Proc.Nat.Acad.Sci., 99, p7821-7826, 2002.
53.    A. Enright, S. Van Dongen and C. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, 30, p1575-1584, 2002.
54.    Z. Bar-Joseph et al., Computational discovery of gene modules and regulatory networks, Nature Biotechnology, 21, p1337-1342, 2003.
55.    汪小帆、李翔、陈关荣:复杂网络理论与应用. 清华大学出版社,2006.
56.    C. W. Wu and L. O. Chua, Application of graph theory to the synchronization in an array of coupled nonlinear oscillators. IEEE Trans. Circuits & Systems–I 42, p494–497, 1995.
57.    C. W. Wu and L. O. Chua. Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits & Systems–I 42, p430-447, 1995.
58.    C. W. Wu. Synchronization in networks of nonlinear dynamical systems via a directed graph. Nonlinearity 18, p1057-1064, 2005.
59.    X. F. Wang and G. R. Chen. Synchronization in small-world dynamical networks. Int. J. Bifurcation & Chaos 12, p187-192, 2002.
60.    X. F. Wang and G. R. Chen. Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits & Systems–I 49, p54-62, 2002.
61.    X. Li and Chen G. R. Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits & Systems-I 50,  p1381-1390, 2003.
62.    J. H. Lu, X. H. Yu, G. R. Chen, and D. Z. Cheng Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits & Systems-I 51, p787-796, 2004.
63.    Z. Li and G. R. Chen, Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits & Systems–II 53, p28-33, 2006.
64.    L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, p2109, 1998.
65.    M. Barahona and  L. M. Pecora. Synchronization in small-world systems. Phys. Rev. Lett. 89, p054101, 2004.
66.    W. L. Lu and T. P. Chen. New approach to synchronization analysis of linearly coupled ordinary differential equations. Physics D 213, p214-230, 2006.
67.    C. G. Li and G. R.Chen. Synchronization in general complex dynamical networks with coupling delays. Physica A 343, p236-278, 2004.
68.    J. Zhou and T. P. Chen, Synchronization in general complex delayed dynamical networks, IEEE Trans. Circuits & Systems -I, 53, p733-7442006.
69.    周进, 陈天平和刘美春, 具有脉冲效应的复杂网络模型,第二届全国复杂动态网络学术论坛论文集中国高等科学技术中心出版社,170(I), p231-235,2005。
70.    G. R. Chen, J. Zhou and S. Celikovsky,On LaSalle’s invariance principle and its application to robust synchronization of general vector Lienard equation, IEEE, Trans, Automat, Control, 49, p869-874. 2005.
71.    J. Xu and K. W. Chung, “Effects of time delayed position feedback on van Pol-Duffing oscillator,” Physica D, 180, p17-39, 2003.
72.    G. R. Chen, J. Zhou and Z. G. Liu, Global synchronization of coupled delayed neural networks and applications to chaotic CNN models, Int. J. Bifur & Chaos, 14: p2229-2240, 2004.
73.    J. Zhou, T. P. Chen and L, Xiang, Robust synchronization of coupled delayed recurrent neural networks, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, New York, 3173:p144-149, 2004.
74.    J. Zhou, T. P. Chen and L, Xiang, Robust synchronization of delayed neural networks based on adaptive control and parameters identification, Chaos, Solitons, Fractals, 27: p905-913, 2006.
75.    J. Zhou, T. P. Chen and L, Xiang, Adaptive synchronization of delayed neural networks based on parameters identification, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, New York, 3496:p308-313, 2005.
76.    J. Zhou, T. P. Chen L, Xiang and M. C. Liu, Global synchronization of impulsive coupled delayed neural networks, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, New York, 3971:p303-308, 2006.
77.    J. Zhou, T. P. Chen and  L, Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication, Circuits, Systems and Signal Processing, 25: p599-613, 2005.
78.    Y. Kuramoto, In H. Arakai, editor, International Symposium on Mathematical Problems in Theoretical Physics, Volume 39 of Lecture Notes in Physics, Springer, New York, 1975.
79.    J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, p137-185, 2005.
80.    S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, p1-20, 2000.
81.    H. Hong, H. Parkand M. Y. Choi, Collective synchronization in spatially extended systems of coupled oscillators with random frequencies, Phys.Rev.E, 72, 036217, 2005.
82.    H. Hong, B. J. Kim, M.Y. Choi and H. Park, Factors that predict better synchronizability on complex networks, Phy.Rev.E., 69, 067105, 2004.
83.    H. Hong, M. Y. Choi and B.J.Kim, Synchronization on small-world networks, Phys.Rev.E., 65, 026139, 2002.
84.    Y. M. Moreno Vega, M. Vasquez-Prada and A. F. Pacheco, Fitness for synchronization of network motifs, Physica A, 343, p279-287, 2004.
85.    F. Liljeros et. al., The Web of Human sexual contact, Nature, 411, p907, 2001.
86.    R. Pastor-Satorras et.al, Epidemic spreading in scale-free networks, Phys.Rev.Lett., 86, p3200-3203, 2002
87.    R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks, Phys.Rev.E., 64, 066112, 2001.
88.    R. Pastor- Satorras, and A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys.Rev.E., 65, 035108, 2002.
89.    M. Boguna, R. Pastor-Satorras and A.Vespignani, Absence of epidemic threshold in scale-free networks with degree correlations, Phys.Rev.Lett., 90, 028701, 2003.
90.    R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991.
91.    R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991.
92.    H. Hethcote, The mathematics of infectious diseases, SIAM. Review, 42(3), p599-653, 2000.
93.    D. Hwang, et.al, Thresholds for epidemic outbreaks in finite scale- free networks, Mathematical Bioscience and Engineering, 2, p317-327, 2005.
94.    A. Enright, S. Van Dongen and C.Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, 30, p1575-1584, 2002.
95.    M. Boguna and R. Pastor-Satorras, Epidemic spreading in corrected complex networks, Phys.Rev.E., 66, 047104, 2002.
96.    Z. Dezso and A. Barabasi, Halting viruses in scale free networks, Phys.Rev.E., 65, 055103, 2002.
97.    R Pastor-Satorras and A.Vespignani, Immunization of complex networks, Phys.Rev.E., 65, 036104, 2002.
98.    S. Eubank et.al., Modelling disease outbreak in realistic urban social networks, Nature, 429, p180-182, 2004.
99.    N. Becker et.al., Controlling emerging infectious diseases like SARS, Mathematical Bioscience, 193, p205-221, 2005.
100. S. Shen-Orr, R. Milo, S. Mangan and U.Alon, Network motifs in the transcriptional regulatory network of Escherichia coli, Nature Genetics, 31, p64-68, 2002.
101. Y. M. Moreno Vega, M Vasquez-Prada and A F Pacheco, Fitness for synchronization of network motifs, Physica A., 343, p279-287, 2004.
102. Z. H. Ma , Z. R. Liu and G.. Zhang, A new method to realize cluster synchronization in connected chaotic network, Chaos, 16, 023103, 2006.
103. I. Belykh, V. Belykh, and M. Hasler, .Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, 195, p188-206, 2004.
104. I. Belykh, V. Belykh, and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195, p159-187, 2004.
105. Daniel J. Stilwell; Erik M. Bollt; D. Gray Roberson; Daniel J. Stilwell; Erik M. Bollt; D. Gray Roberson; Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies, SIAM Journal on Applied Dynamical Systems ,5 p140-156 2006.
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-8 01:22 , Processed in 0.057370 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表