声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 4633|回复: 4

[综合讨论] ode45 solver 行星齿轮振动方程求解

[复制链接]
发表于 2014-6-25 16:06 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
采用matlab 里面自带的ode 45 方程求解,包含各个齿轮的平移和各自的转角,模型公式来自Kahraman的 ‘load sharing characteristics of planetary transmissions’ 文章。太阳轮输入,行星架输出,内齿轮固定,

v = zeros(24,1);
vdot = zeros(size(v));


rs = 0.105*cos(20*pi/180); % base sun gear circle radii, m
rp = 0.195*cos(20*pi/180);% base planet gear circle radii, m
rr = 0.495*cos(20*pi/180);% base ring gear circle radii, m
rc = (0.105+0.195);      % carrier arm circle radii, m

is = 24; % mass moment of inertia of sun gear, kg m^2
ip = 2.04; % mass moment of inertia of planet gear, kg m^2
ir = 75.4; % mass moment of inertia of rin gear, kg m^2
ic = 60.3; %mass moment of inertia of carrier arm, kg m^2

ms =181.6; % sun gear mass
mp =104; % planet gear mass
mr =480; % ring gear mass
mc =756.9; % carrier arm mass



function vdot = geardot(t,v)

% declare all global variables
global rs rp rc rr is ip ic ir  ms mp mr ksp krp  angl   

torque_s = 1; % input torque
torque_c = 0.0075*v(24)^2; % output load characteristic

kspi=1e5;
krpi=2.5e5;


kmsp=(kspi/(rs*rs));
kmrp=(krpi/(rp*rp)); %linear stiffness

csp=2*0.03*sqrt((kmsp*rs^2*rp^2*is*ip)/(rs^2*is+rp^2*ip)); % sun planet gear mesh damping
crp=2*0.03*sqrt((kmrp*rr^2*rp^2*ir*ip)/(rr^2*ir+rp^2*ip)); % ring planet gear mesh damping

psi=v(23)/rc;

psi_s1=psi-20*pi/180;
psi_r1=psi+20*pi/180;

%relative gear mesh displacement of sun-planet pair
delta_sp=(v(1)-v(7))*cos(psi_s1)-(v(3)-v(9))*sin(psi_s1)-v(5)-v(11);

delta_vsp=0;

%relative gear mesh displacement of planet-ring pair
delta_rp=(0-v(7))*cos(psi_r1)-(0-v(9))*sin(psi_r1)-0+v(11);

delta_vrp=0;

%carrier arm assemble error
ec=0;
et=0;

%planet gear pin displacement
pin_y=v(19)-v(7)-v(23)*cos(psi)+ec*sin(psi)+et*cos(psi);
pin_vy=v(20)-v(8)-v(24)*cos(psi);

pin_x=v(21)-v(9)+v(23)*sin(psi)+ec*cos(psi)+et*sin(psi);
pin_vx=v(22)-v(10)+v(24)*sin(psi);

%planet gear pin stiffness
cyy=0;
cxx=cyy;

kyy=1e8;
kxx=kyy;

%ring gear reaction torque_r
%krt=1e12;
%torque_r = -v(17)*krt;

%sun gear motion equations
vdot(1,1) = v(2);
vdot(2,1) = (-csp*delta_vsp*cos(psi_s1)-kmsp*delta_sp*cos(psi_s1))/ms;
vdot(3,1) = v(4);
vdot(4,1) = (csp*delta_vsp*sin(psi_s1)+kmsp*delta_sp*sin(psi_s1))/ms;
vdot(5,1) = v(6);
vdot(6,1) = ((torque_s/rs+csp*delta_vsp+kmsp*delta_sp)*rs^2)/is;
%planet gear motion equations
vdot(7,1) = v(8);
vdot(8,1) = ((csp*delta_vsp*cos(psi_s1)+kmsp*delta_sp*cos(psi_s1))+(crp*delta_vrp*cos(psi_r1)+kmrp*delta_rp*cos(psi_r1))+cyy*pin_vy+kyy*pin_y)/mp;
vdot(9,1) = v(10);
vdot(10,1)= (-(csp*delta_vsp*sin(psi_s1)+kmsp*delta_sp*cos(psi_s1))-(crp*delta_vrp*sin(psi_r1)+kmrp*delta_rp*cos(psi_r1))+cxx*pin_vx+kxx*pin_x)/mp;
vdot(11,1)= v(11);
vdot(12,1)= (((csp*delta_vsp+kmsp*delta_sp)-(-crp*delta_vrp+kmrp*delta_rp))*rp^2)/ip;
%ring gear motion equations
vdot(13,1)= 0;
vdot(14,1)= 0;
vdot(15,1)= 0;
vdot(16,1)= 0;
vdot(17,1)= 0;
vdot(18,1)= 0;
%carrier arm motion equations
vdot(19,1)= v(20);
vdot(20,1)= -cyy*pin_vy-kyy*pin_y;
vdot(21,1)= v(22);
vdot(22,1)= -cxx*pin_vx-kxx*pin_x;
vdot(23,1)= v(24);
vdot(24,1)= ((-torque_c/rc-cxx*pin_vx*sin(psi)+cyy*pin_vy*cos(psi)-kxx*pin_x*sin(psi)+kyy*pin_y*cos(psi))*rc^2)/ic;


当查看太阳轮的扭转速度v(5)或者是行星架的扭转速度v(24),发现并没有稳定在某一个速度,跟实际不符合。
请大家帮忙查看一下.
请问大家有做行星齿轮振动分析的么?求交流!

回复
分享到:

使用道具 举报

 楼主| 发表于 2014-6-26 12:37 | 显示全部楼层
请问论坛里面有用Kahraman 或者 Parker 的模型研究行星齿轮振动的么?
发表于 2014-7-13 08:02 | 显示全部楼层
主函数呢。12自由度?真是够高的。
发表于 2018-10-29 15:43 | 显示全部楼层
我也正在做相关研究可以交流一下
发表于 2019-4-19 19:47 | 显示全部楼层
好贴收藏
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-28 13:26 , Processed in 0.067705 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表