声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1390|回复: 3

[动力学和稳定性] READING LIST FOR ECE/ChE/Math777, Nonlinear Dynamics, Bifurcations, Chaos

[复制链接]
发表于 2007-9-11 13:17 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
相信学习非线性动力学的同道中人,没有人不为经典理论而挠首。不知道,您是否看到过这个书单?其中您又读过几本?又读懂了几本?
Guckenheimer, J., Holmes, P. [1983] Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer Verlag, New York.
– This is the main book defining the level of the course. Some students prefer Wiggins to Guckenheimer and Holmes. I recommend Strogatz and Seydel for easier treatments of some of the course material.
Gleick, J. [1988] Chaos, Making a new science, Penguin. –Popular introduction to chaos and the personalities discovering it.
Thompson, J.M.T., Stewart, H.B. [1986] Nonlinear dynamics and chaos: geometrical methods for engineers and scientists, John Wiley, New York. –Easier, nonrigorous introduction to some of the course material
Strogatz, S.,[1994] Nonlinear dynamics and Chaos : with applications in physics, biology, chemistry, and engineering, Addison-Wesley, Reading MA.
– Excellent introduction to subject; particularly good on the interplay of applications and mathematics.
Seydel, R. [1988] From equilibrium to chaos: practical bifurcation and stability analysis, Elsevier, New York OR the second edition [1994], Springer-Verlag, New York.
– Very good introduction to numerical methods for bifurcations
Hirsch, M.W., Smale, S. [1974] Differential equations, dynamical systems and linear algebra, Academic Press, New York.
– Excellent background material for the course.
Baker, G.L., Golub, J.P. [1990] Chaotic dynamics: an introduction, Cambridge University Press, New York.
Bai-Lin, H. [1984] Chaos, World Scientific, Singapore.
– Good collection of classic papers on chaos, including Feigenbaum, May, H´enon, Lorenz, Ruelle and Takens.
Holden A., V. [1986] Chaos, Princeton University Press.
– Papers on applications of chaos.
Barnsley, M.F. [1988] Fractals everywhere, Academic Press, San Diego.
Abraham, R.H. and C.D. Shaw [1988], Dynamics, the geometry of behavior, volumes 1–4, Aerial Press, Santa Cruz, CA. –Great pictures of dynamical systems; you must sample this.
Shaw, R. [1984], The dripping faucet as a model chaotic system, Aerial Press, Santa Cruz, CA. –an inspiring classic
Ott, E. [1993] Chaos in dynamical systems, Cambridge University Press
Devaney, R.L. [1989] An introduction to chaotic dynamical systems, Second Edition, Addison-Wesley.
– Develops the ideas and math of dynamical systems theory for one dimensional maps.
Golubitsky, M., Schaeffer, D.G. [1985] Singularities and groups in bifurcation theory, Volume 1, Springer Verlag, New York. –Try this for Lyapunov-Schmidt reduction and organizing centers
Wiggins, S. [1990] Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, Texts in Applied Mathematics 2. –comprehensive and some prefer it to Guckenheimer and Holmes
Palis, J., de Melo, W. [1982] Geometric theory of dynamical systems; an introduction, Springer Verlag, New York.
– Excellent mathematical reference on dynamical systems: read the first 99 pages after you have read much of GH to get a good handle on the math.

评分

1

查看全部评分

回复
分享到:

使用道具 举报

发表于 2007-9-11 17:59 | 显示全部楼层
顶.确实都是经典著作,我只读过其中两本
发表于 2007-9-12 18:24 | 显示全部楼层

回复 #1 liuxiangf 的帖子

确实很多都是好书,但是到现在还没有读完一本,(英文的看起来很累、很慢的)
发表于 2007-12-16 22:51 | 显示全部楼层
书是很经典
:@) :@)
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-11 22:00 , Processed in 0.059152 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表