声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1227|回复: 0

[综合讨论] 求助 程序的简化

[复制链接]
发表于 2009-8-19 16:14 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
各位大侠,这是我的写的一个程序,主要的目的是把一个(N+1)^2*(N+1)^2方阵约化至(N+1)*(N+1)的方阵。但是里面有几层的循环,做起来很浪费时间,请大家帮忙看看有没有办法调整一下。

这个程序的思路其实是很简单的,rho是一个
(N+1)^2*(N+1)^2的方阵,是由(N+1)^2的列矩阵和(N+1)^2行矩阵相乘得到的。rho2是一个(N+1)*(N+1)的方阵,是由rho约化得来的。a(程序中用a1和a2表示)和b分别是两组长度为(N+1)的基矢,具有相同的形式,每一组中的第n个矢量可以写成一个单位方矩阵的第n列元素。rho2中的元素,
             rho2(k1,k2)=\sum [ kron(a(k1),b(i)) ]' * rho *
kron(a(k2),b(i))。
kron(a(k1),b(i)) 表示 a 这组基矢中的第 k1 个矢量和 b 中第 i 个矢量的直积,\sum是对b的所有基矢的求和。
就是这样了,请大家帮忙看看吧。多谢了。
function rho2=reduce(psi1,psi11,N)
format long
% global N
rho=psi1*psi11;
% psi1是一(N+1)^2维列矩阵,psi11为一(N+1)^2维行矩阵
rho2=zeros(N+1,N+1);
I=eye(N+1,N+1);
for k1=1:N+1
    a1=I(:,k1);
    for k2=1:N+1
        a2=I(:,k2);
        for k3=1:N+1
            b=I(:,k3);
            phi1=kron(a1,b);
            phi2=kron(a2,b);
            rho2(k1,k2)=phi1'*rho*phi2+rho2(k1,k2);
        end
    end
end
回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-27 06:47 , Processed in 0.068796 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表