§5 最大最小化模型
例1 求解下列最大最小值问题: f(1)=3*x(1)^2+2*x(2)^2-12*x(1)+35; f(2)=5*x(1)*x(2)-4*x(2)+7; f(3)=x(1)^2+6*x(2); f(4)=4*x(1)^2+9*x(2)^2-12*x(1)*x(2)+20; 1stOpt代码: ****************** ConstStr f1=3*x1^2+2*x2^2-12*x1+35; ConstStr f2=5*x1*x2-4*x2+7; ConstStr f3=x1^2+6*x2; ConstStr f4=4*x1^2+9*x2^2-12*x1*x2+20; MinMax (f1,f2,f3,f4); ******************* 结果: 极大极小值(MinMax): 23.7330562340718 x1: 1.76366991702807 x2: 0.531742658491502 极大极小函数: 1: (3*x1^2+2*x2^2-12*x1+35) = 23.73305623 2: (5*x1*x2-4*x2+7) = 9.562122018 3: (x1^2+6*x2) = 6.300987527 4: (4*x1^2+9*x2^2-12*x1*x2+20) = 23.73305623 例2:选址问题 设某城市有某种物品的10个需求点,第i个需求点Pi的坐标为(ai,bi),道路网与坐标轴平行,彼此正交。现打算建一个该物品的供应中心,且由于受到城市某些条件的限制,该供应中心只能设在x界于[5,8],y界于[5.8]的范围之内。问该中心应建在何处为好? P点的坐标为: 建立数学模型: 1stOpt代码: ****************** Constant a(1:10) = [1,4,3,5,9,12,6,20,17,8]; Constant b(1:10) = [2,10,8,18,1,4,5,10,8,9]; ConstStr For(i=1:10)(f = abs(x1-a)+abs(x2-b)); ParameterDomain = [5,8]; MinMax (f1,f2,f3,f4,f5,f6,f7,f8,f9,f10); ********************* 结果: 极大极小值(MinMax): 14 x1: 8 x2: 8 极大极小函数: 1: (abs(x1-1)+abs(x2-2)) = 13 2: (abs(x1-4)+abs(x2-10)) = 6 3: (abs(x1-3)+abs(x2-8)) = 5 4: (abs(x1-5)+abs(x2-18)) = 13 5: (abs(x1-9)+abs(x2-1)) = 8 6: (abs(x1-12)+abs(x2-4)) = 8 7: (abs(x1-6)+abs(x2-5)) = 5 8: (abs(x1-20)+abs(x2-10)) = 14 9: (abs(x1-17)+abs(x2-8)) = 9 10: (abs(x1-8)+abs(x2-9)) = 1 Matlab的原贴在: http://forum.vibunion.com/thread-732-1-1.html |
原帖由 dingd 于 2006-6-20 16:16 发表
§4 多目标规划模型例1:某钢铁厂准备用5000万用于A、B两个项目的技术改造投资。设x ...
GMT+8, 2025-4-11 21:31 , Processed in 0.049214 second(s), 26 queries , Gzip On.
Powered by Discuz! X3.4
Copyright © 2001-2021, Tencent Cloud.